.. _Tutorial: Tutorial ============= .. code-block:: python import SBMLKinetics initial_model_indx = 5 final_model_indx = 6 model_indices = range(initial_model_indx, final_model_indx+1) analyzer = KineticAnalyzer(path = 'D:/path/to/folder', dataSet = "biomodels.zip", model_indices=model_indices) #Query Distributions analyzer.getKTypeDistribution() analyzer.getKTypeDistributionPerRType(R_type = SBMLKinetics.types.R_type(1,1)) analyzer.getRTypeDistribution() analyzer.getRTypeDistributionPerModel() #Query Elements analyzer.getTopKType()[0].K_type_str analyzer.getKTypeProb(K_type = SBMLKinetics.types.K_type("NA") analyzer.getTopKTypePerRType(R_type = SBMLKinetics.types.R_type(1,1))[0].K_type_str analyzer.getKTypeProbPerRType(R_type = SBMLKinetics.types.R_type(1,1), K_type=SBMLKinetics.types.K_type("NA")) analyzer.getTopRType()[0].rct_num analyzer.getRTypeProb(R_type = SBMLKinetics.types.R_type(1,1)) analyzer.getNumSBMLModelsAnalyzed() analyzer.getNumRxnsAnalyzed() #Plots analyzer.plotKTypeDistribution(path = 'D:/path/to/folder/') analyzer.plotKTypeDistributionPerRType(R_type = SBMLKinetics.types.R_type(1,1)) analyzer.plotKTypeDistributionVsRType() analyzer.plotRTypeDistribution() analyzer.plotRTypeDistributionPerModel() For example, the output of analyzer.getKTypeDistribution() is a dataframe as below. .. list-table:: :widths: 25 25 25 25 25 :header-rows: 1 * - Classifications - Percentage - Percentage standard error - Percentage per model - Percentage per model standard error * - ZERO - 0.33333 - 0 - 0.33333 - 0 * - UNDR - 0.33333 - 0 - 0.33333 - 0 * - UNMO - 0 - 0 - 0 - 0 * - BIDR - 0 - 0 - 0 - 0 * - BIMO - 0 - 0 - 0 - 0 * - MM - 0 - 0 - 0 - 0 * - MMCAT - 0 - 0 - 0 - 0 * - HILL - 0 - 0 - 0 - 0 * - FR - 0 - 0 - 0 - 0 * - NA - 0.33333 - 0 - 0.33333 - 0