TutorialΒΆ

import SBMLKinetics

initial_model_indx = 5
final_model_indx = 6

model_indices = range(initial_model_indx, final_model_indx+1)
analyzer = KineticAnalyzer(path = 'D:/path/to/folder',
dataSet = "biomodels.zip", model_indices=model_indices)

#Query Distributions
analyzer.getKTypeDistribution()
analyzer.getKTypeDistributionPerRType(R_type = SBMLKinetics.types.R_type(1,1))
analyzer.getRTypeDistribution()
analyzer.getRTypeDistributionPerModel()

#Query Elements
analyzer.getTopKType()[0].K_type_str
analyzer.getKTypeProb(K_type = SBMLKinetics.types.K_type("NA")
analyzer.getTopKTypePerRType(R_type = SBMLKinetics.types.R_type(1,1))[0].K_type_str
analyzer.getKTypeProbPerRType(R_type = SBMLKinetics.types.R_type(1,1), K_type=SBMLKinetics.types.K_type("NA"))
analyzer.getTopRType()[0].rct_num
analyzer.getRTypeProb(R_type = SBMLKinetics.types.R_type(1,1))
analyzer.getNumSBMLModelsAnalyzed()
analyzer.getNumRxnsAnalyzed()

#Plots
analyzer.plotKTypeDistribution(path = 'D:/path/to/folder/')
analyzer.plotKTypeDistributionPerRType(R_type = SBMLKinetics.types.R_type(1,1))
analyzer.plotKTypeDistributionVsRType()
analyzer.plotRTypeDistribution()
analyzer.plotRTypeDistributionPerModel()

For example, the output of analyzer.getKTypeDistribution() is a dataframe as below.

Classifications

Percentage

Percentage standard error

Percentage per model

Percentage per model standard error

ZERO

0.33333

0

0.33333

0

UNDR

0.33333

0

0.33333

0

UNMO

0

0

0

0

BIDR

0

0

0

0

BIMO

0

0

0

0

MM

0

0

0

0

MMCAT

0

0

0

0

HILL

0

0

0

0

FR

0

0

0

0

NA

0.33333

0

0.33333

0